Customer Behavior Analysis Using Rough Set Approach
نویسندگان
چکیده
The customer relationship management (CRM) is a business methodology used to build long term profitable customers by analyzing customer needs and behaviors. The customer behavior is analyzed by choosing important attributes in the customer database. The customers are then segmented into groups according to their attribute values. The rules are generated using rule induction algorithms to describe the customers in each group. These rules can be used by the entrepreneur to predict the behavior of their new customers and to vary the attraction process for existing customers. In this paper a new rule algorithm has been proposed based on the concepts of rough set theory. Its performance has been compared with LEM2 (Learning from Examples Module, version 2) algorithm, an existing rough set based rule induction algorithm. Real data set of the customer transaction is used for analysis. Recency(R), Frequency (F), Monetary (M) and Payment (P) are the attributes chosen for analyzing customer data. The proposed algorithm on average achieves 0.439% increase in sensitivity, 0.007% increase in specificity, 0.151% increase in accuracy, 0.014% increase in positive predictive value, 0.218% increase in negative predictive value and 0.228% increase in F-measure when compared to LEM2 algorithm.
منابع مشابه
Clustering Customer Transactions: A Rough Set Based Approach
An efficient customer behavior analysis is important for good Recommender System. Customer transaction clustering is usually the first step towards the analysis of customer behavior. Traditionally data mining techniques are deployed in order to provide effective recommendation based on large population of customer transactions in real time. Customer transactions are likely to be imprecise and i...
متن کاملA novel decision rules approach for customer relationship management of the airline market
Customer churn means the loss of existing customers to a competitor. Accurately predicting customer behavior may help firms to minimize this loss by proactively building a lasting relationship with their customers. In this paper, the application of the factor analysis and the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) in the customer relationship management (CRM) of the a...
متن کاملA Dominance-based Rough Set Approach to customer behavior in the airline market
Market segmentation is a crucial activity in the present business environment. Data mining is a useful tool for identifying customer behavior patterns in large amounts of data. This information can then be used to help with decision-making in areas such as the airline market. In this study, we use the Dominance-based Rough Set Approach (DRSA) to provide a set of rules for determining customer a...
متن کاملA New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)
Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...
متن کاملCluster & Rough Set Theory Based Approach to Find the Reason for Customer Churn
Data mining is the nontrivial process of extraction of interesting, implicit, potentially and previously unknown knowledge from large databases. There are many techniques used in data mining like: Statistical Analysis, Decision Tree, Neural Network, Clustering, Association Rule, Genetic Algorithms, Fuzzy Logic, and Rough Sets. Rough Set theory (RST), is a technique for dealing with uncertainty ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JTAER
دوره 8 شماره
صفحات -
تاریخ انتشار 2013